Targeting a cardiac abundant and fibroblasts-specific piRNA (CFRPi) to attenuate and reverse cardiac fibrosis in pressure-overloaded heart failure.

Bo Chen, Bozhong Shi, Zijie Zhou, Yue Cui, Guowei Zeng, Lingyan Cheng, Xiaoyang Zhang,Kai Luo, Cong Li,Zhongqun Zhu,Zhifang Zhang,Jinghao Zheng,Xiaomin He

Translational research : the journal of laboratory and clinical medicine(2024)

引用 0|浏览4
暂无评分
摘要
Cardiac fibrosis under chronic pressure overload is an end-stage adverse remodeling of heart. However, current heart failure treatments barely focus on anti-fibrosis and the effects are limited. We aimed to seek for a cardiac abundant and cardiac fibrosis specific piRNA, exploring its underlying mechanism and therapeutic potential. Whole transcriptome sequencing and the following verification experiments identified a highly upregulated piRNA (piRNA-000691) in transverse aortic constriction (TAC) mice, TAC pig, and heart failure human samples, which was abundant in heart and specifically expressed in cardiac fibroblasts. CFRPi was gradually increased along with the progression of heart failure, which was illustrated to promote cardiac fibrosis by gain- and loss-of-function experiments in vitro and in vivo. Knockdown of CFRPi in mice alleviated cardiac fibrosis, reversed decline of systolic and diastolic functions from TAC 6 weeks to 8 weeks. Mechanistically, CFRPi inhibited APLN, a protective peptide that increased in early response and became exhausted at late stage. Knockdown of APLN in vitro notably aggravated cardiac fibroblasts activation and proliferation. In vitro and in vivo evidence both indicated Pi3k-AKT-mTOR as the downstream effector pathway of CFRPi-APLN interaction. Collectively, we here identified CFPPi as a heart abundant and cardiac fibrosis specific piRNA. Targeting CFRPi resulted in a sustainable increase of APLN and showed promising therapeutical prospect to alleviate fibrosis, rescue late-stage cardiac dysfunction, and prevent heart failure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要