Catalytic anode surface enabling in situ polymerization of gel polymer electrolyte for stable Li metal batteries

Nano Research(2024)

引用 0|浏览2
暂无评分
摘要
Employing quasi-solid-state gel polymer electrolyte (GPE) instead of the liquid counterpart has been regarded as a promising strategy for improving the electrochemical performance of Li metal batteries. However, the poor and uneven interfacial contact between Li metal anode and GPE could cause large interfacial resistance and electrochemical Li stripping/plating inhomogeneity, deteriorating the electrochemical performance. Herein, we proposed that the functional component of composite anode could work as the catalyst to promote the in situ polymerization reaction, and we experimentally realized the integration of polymerized-dioxolane electrolyte and Li/Li22Sn5/LiF composite electrode with low interfacial resistance and good stability by in situ catalyzation polymerization. Thus, the reaction kinetics and stability of metallic Li anode were significantly enhanced. As a demonstration, symmetric cell using such a GPE-Li/Li22Sn5/LiF integration achieved stable cycling beyond 250 cycles with small potential hysteresis of 25 mV at 1 mA·cm−2 and 1 mAh·cm−2, far outperforming the counterpart regular GPE on pure Li. Paired with LiNi0.5Co0.3Mn0.2O2, the full cell with the GPE-Li/Li22Sn5/LiF integration maintained 85.7
更多
查看译文
关键词
catalyzation polymerization,interface resistance,interfacial stability,Li metal batteries,electrochemical performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要