Retrosynthesis prediction enhanced by in-silico reaction data augmentation

CoRR(2024)

引用 0|浏览16
暂无评分
摘要
Recent advances in machine learning (ML) have expedited retrosynthesis research by assisting chemists to design experiments more efficiently. However, all ML-based methods consume substantial amounts of paired training data (i.e., chemical reaction: product-reactant(s) pair), which is costly to obtain. Moreover, companies view reaction data as a valuable asset and restrict the accessibility to researchers. These issues prevent the creation of more powerful retrosynthesis models due to their data-driven nature. As a response, we exploit easy-to-access unpaired data (i.e., one component of product-reactant(s) pair) for generating in-silico paired data to facilitate model training. Specifically, we present RetroWISE, a self-boosting framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation using unpaired data, ultimately leading to a superior model. On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models (e.g., +8.6 on the USPTO-50K test dataset). Moreover, it consistently improves the prediction accuracy of rare transformations. These results show that Retro- WISE overcomes the training bottleneck by in-silico reactions, thereby paving the way toward more effective ML-based retrosynthesis models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要