From the Iron Pentacarbonyl Cation to Heteroleptic η6-arene Carbonyls and bis-η6-arene Cations.

Chemistry (Weinheim an der Bergstrasse, Germany)(2024)

引用 0|浏览0
暂无评分
摘要
Partial ligand substitution at the iron pentacarbonyl radical cation generates novel half-sandwich complexes of the type [Fe(η6-arene)(CO)2]⋅+ (arene=1,3,5-tri-tert-butylbenzene, 1,3,5-trimethylbenzene, benzene and fluorobenzene). Of those, the bulkier 1,3,5-tri-tert-butylbenzene (mes*) derivative [Fe(mes*)(CO)2]⋅+ was fully characterized by XRD analysis, IR, NMR, cw-EPR, Mössbauer spectroscopy and cyclic voltammetry as the [Al(ORF)4]- (RF=C(CF3)3) salt. Chemical electronation, i. e., the single electron reduction, with decamethylferrocene generates neutral [Fe(mes*)(CO)2], whereas further deelectronation under CO-pressure leads to a dicationic three-legged [Fe(mes*)(CO)3]2+ salt with [Al(ORF)4]- counterion. The full substitution of the carbonyl ligands in [Fe(CO)5]⋅+[Al(ORF)4]- mainly resulted in disproportionation reactions, giving solid Fe(0) and the dicationic bis-arene salts [Fe(η6-arene)2]2+([Al(ORF)4]-)2 (arene=1,3,5-trimethylbenzene, benzene and fluorobenzene). Only by employing the very large fluoride bridged anion [F-{Al(ORF)3}2]-, it was possible to isolate an open shell bis-arene cation salt [Fe(C6H6)2]⋅+[F-{Al(ORF)3}2]-. The highly reactive cation was characterized by XRD analysis, cw-EPR, Mössbauer spectroscopy and cyclic voltammetry. The disproportionation of [Fe(C6H6)2]⋅+ salts to give solid Fe(0) and [Fe(C6H6)2]2+ salts was analyzed by a suitable cycle, revealing that the thermodynamic driving force for the disproportionation is a function of the size of the anion used and the polarity of the solvent.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要