Changes in Intrinsic Connectivity Networks Topology Across Levels of Dexmedetomidine-Induced Alteration of Consciousness.

Anesthesia and analgesia(2024)

引用 0|浏览3
暂无评分
摘要
BACKGROUND:Human consciousness is generally thought to emerge from the activity of intrinsic connectivity networks (resting-state networks [RSNs]) of the brain, which have topological characteristics including, among others, graph strength and efficiency. So far, most functional brain imaging studies in anesthetized subjects have compared wakefulness and unresponsiveness, a state considered as corresponding to unconsciousness. Sedation and general anesthesia not only produce unconsciousness but also phenomenological states of preserved mental content and perception of the environment (connected consciousness), and preserved mental content but no perception of the environment (disconnected consciousness). Unresponsiveness may be seen during unconsciousness, but also during disconnectedness. Deep dexmedetomidine sedation is frequently a state of disconnected consciousness. In this study, we were interested in characterizing the RSN topology changes across 4 different and steady-state levels of dexmedetomidine-induced alteration of consciousness, namely baseline (Awake, drug-free state), Mild sedation (drowsy, still responding), Deep sedation (unresponsive), and Recovery, with a focus on changes occurring between a connected consciousness state and an unresponsiveness state. METHODS:A functional magnetic resonance imaging database acquired in 14 healthy volunteers receiving dexmedetomidine sedation was analyzed using a method combining independent component analysis and graph theory, specifically looking at changes in connectivity strength and efficiency occurring during the 4 above-mentioned dexmedetomidine-induced altered consciousness states. RESULTS:Dexmedetomidine sedation preserves RSN architecture. Unresponsiveness during dexmedetomidine sedation is mainly characterized by a between-networks graph strength alteration and within-network efficiency alteration of lower-order sensory RSNs, while graph strength and efficiency in higher-order RSNs are relatively preserved. CONCLUSIONS:The differential dexmedetomidine-induced RSN topological changes evidenced in this study may be the signature of inadequate processing of sensory information by lower-order RSNs, and of altered communication between lower-order and higher-order networks, while the latter remain functional. If replicated in an experimental paradigm distinguishing, in unresponsive subjects, disconnected consciousness from unconsciousness, such changes would sustain the hypothesis that disconnected consciousness arises from altered information handling by lower-order sensory networks and altered communication between lower-order and higher-order networks, while the preservation of higher-order networks functioning allows for an internally generated mental content (or dream).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要