Experimental Study of Temperature Control Based on Composite Phase Change Materials during Charging and Discharging of Battery

Journal of Thermal Science(2024)

引用 0|浏览0
暂无评分
摘要
This study is to utilize the heat-absorbing and releasing capabilities of phase change materials (PCM) to regulate the surface temperature fluctuations of batteries during charging and discharging. The goal is to keep the battery within the optimal operating temperature range. The impact of PCM thickness and phase change temperature on battery temperature is investigated by encircling a cylindrical battery with a PCM ring. To improve the thermal conductivity of PCM, expanded graphite (EG) is added to make a composite phase change material (CPCM), and the effects of various EG mass ratios on battery surface temperature and CPCM utilization level are investigated. The findings indicate that increasing PCM thickness effectively extends temperature control time, but its impact is limited. The difference in phase change temperature of PCM controls the battery temperature in different temperature ranges. Lower phase change temperatures are unsuitable for controlling battery temperature in high temperature environments. The addition of EG enhances the thermal conductivity of PCM, leading to further control of battery temperature. The results show that the addition of 6% (mass ratio) EG to CPCM extends the effective temperature control time by 11 min and improves by 28% compared to a single PCM. The CPCM utilization is also more satisfactory and achieved a balance between heat storage and thermal conductivity in a battery thermal management system (BTMS) based on PCM.
更多
查看译文
关键词
phase change material,expanded graphite,thermal management system,effective control time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要