Top-Down Exfoliation Process Constructing 2D/3D Heterojunction toward Ultrapure Blue Perovskite Light-Emitting Diodes.

ACS nano(2024)

引用 0|浏览1
暂无评分
摘要
3D perovskites with low energy disorder and high ambipolar charge mobility represent a promising solution for efficient and bright light-emitting diodes. However, the challenges of regulating the nanocrystal size to trigger the quantum confinement effect and control the surface trap states to reduce charge loss hinder the applications of 3D perovskites in blue perovskite light-emitting diodes (PeLEDs). In this study, we present a top-down exfoliation method to obtain blue 3D perovskite films with clipped nanocrystals and tunable bandgaps by employing methyl cyanide (MeCN) for post-treatment. In this method, the MeCN solvent exfoliates the surface components of the 3D perovskite grains through a partial dissolution process. Moreover, the dissolved precursor can be further utilized to construct an ingenious 2D/3D heterostructure by incorporating an organic spacer into the MeCN solvent, contributing to efficient defect passivation and improved energy transfer. Consequently, efficient PeLEDs featuring ultrapure blue emission at 478 nm achieve a record external quantum efficiency of 12.3% among their 3D counterparts. This work emphasizes the significance of inducing the quantum confinement effect in 3D perovskites for efficient blue PeLEDs and provides a viable scheme for the in situ regulation of perovskite crystals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要