Exploring the Potential of Montmorillonite as an Antiproliferative Nanoagent against MDA-MB-231 and MCF-7 Human Breast Cancer Cells

CELLS(2024)

引用 0|浏览5
暂无评分
摘要
Unlike MCF-7 cells, MDA-MB-231 cells are unresponsive to hormone therapy and often show resistance to chemotherapy and radiotherapy. Here, the antiproliferative effect of biocompatible montmorillonite (Mt) nanosheets on MDA-MB-231 and MCF-7 human breast cancer cells was evaluated by MTT assay, flow cytometry, and qRT-PCR. The results showed that the Mt IC50 for MDA-MB-231 and MCF-7 cells in a fetal bovine serum (FBS)-free medium was 50 and similar to 200 mu g/mL, and in 10% FBS medium similar to 400 and similar to 2000 mu g/mL, respectively. Mt caused apoptosis in both cells by regulating related genes including Cas-3, P53, and P62 in MDA-MB-231 cells and Bcl-2, Cas-8, Cas-9, P53, and P62 in MCF-7 cells. Also, Mt arrested MCF-7 cells in the G0/G1 phase by altering Cyclin-D1 and P21 expression, and caused sub-G1 arrest and necrosis in both cells, possibly through damaging the mitochondria. However, fewer gene expression changes and more sub-G1 arrest and necrosis were observed in MDA-MB-231 cells, confirming the higher vulnerability of MDA-MB-231 cells to Mt. Furthermore, MDA-MB-231 cells appeared to be much more vulnerable to Mt compared to other cell types, including normal lung fibroblast (MRC-5), colon cancer (HT-29), and liver cancer (HepG2) cells. The higher vulnerability of MDA-MB-231 cells to Mt was inferred to be due to their higher proliferation rate. Notably, Mt cytotoxicity was highly dependent on both the Mt concentration and serum level, which favors Mt for the local treatment of MDA-MB-231 cells. Based on these results, Mt can be considered as an antiproliferative nanoagent against MDA-MB-231 cells and may be useful in the development of local nanoparticle-based therapies.
更多
查看译文
关键词
montmorillonite,antiproliferative effect,MDA-MB-231,breast cancer,anticancer nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要