The radiative and dynamical impact of clouds in the atmosphere of the hot Jupiter WASP-43 b

arxiv(2024)

引用 0|浏览9
暂无评分
摘要
Hot Jupiters exhibit large day-night temperature contrasts. Their cooler nightsides are thought to host clouds. However, the exact nature of these clouds, their spatial distribution, and their impact on atmospheric dynamics, thermal structure, and spectra is still unclear. We investigate the atmosphere of WASP-43 b, a short period hot Jupiter recently observed with JWST, to understand the radiative and dynamical impact of clouds on the atmospheric circulation and thermal structure. We aim to understand the impact of different kinds of condensates potentially forming in WASP-43 b, with various sizes and atmospheric metallicities. We used a 3D global climate model (GCM) with a new temperature-dependent cloud model that includes radiative feed-backs coupled with hydrodynamical integrations to study the atmospheric properties of WASP-43 b. We produced observables from our simulations and compared them to spectral phase curves from various observations. We show that clouds have a net warming effect, meaning that the greenhouse effect caused by clouds is stronger than the albedo cooling effect. We show that the radiative effect of clouds has various impacts on the dynamical and thermal structure of WASP-43 b. Depending on the type of condensates and their sizes, the radiative-dynamical feedback will modify the horizontal and vertical temperature gradient and reduce the wind speed. For super-solar metallicity atmospheres, fewer clouds form in the atmosphere, leading to a weaker feedback. Comparisons with spectral phase curves observed with HST, Spitzer, and JWST indicate that WASP-43 b s nightside is cloudy and rule out sub-micron Mg2SiO4 cloud particles as the main opacity source. Distinguishing between cloudy solar and cloudy super-solar-metallicity atmospheres is not straightforward, and further observations of both reflected light and thermal emission are needed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要