Distributed DNN Inference with Fine-grained Model Partitioning in Mobile Edge Computing Networks

IEEE Transactions on Mobile Computing(2024)

Cited 0|Views19
No score
Abstract
Model partitioning is a promising technique for improving the efficiency of distributed inference by executing partial deep neural network (DNN) models on edge servers (ESs) or Internet-of-Things (IoT) devices. However, due to heterogeneous resources of ESs and IoT devices in mobile edge computing (MEC) networks, it is non-trivial to guarantee the DNN inference speed to satisfy specific delay constraints. Meanwhile, many existing DNN models have a deep and complex architecture with numerous DNN blocks, which leads to a huge search space for fine-grained model partitioning. To address these challenges, we investigate distributed DNN inference with fine-grained model partitioning, with collaborations between ESs and IoT devices. We formulate the problem and propose a multi-task learning based asynchronous advantage actor-critic approach to find a competitive model partitioning policy that reduces DNN inference delay. Specifically, we combine the shared layers of actor-network and critic-network via soft parameter sharing, and expand the output layer into multiple branches to determine the model partitioning policy for each DNN block individually. Experiment results demonstrate that the proposed approach outperforms state-of-the-art approaches by reducing total inference delay, edge inference delay and local inference delay by an average of 4.76%, 10.04% and 8.03% in the considered MEC networks.
More
Translated text
Key words
Mobile edge computing,distributed DNN inference,model partitioning,multi-task learning,asynchronous advantage actor-critic
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined