Unsupervised Learning Method for the Wave Equation Based on Finite Difference Residual Constraints Loss

Xin Feng,Yi Jiang, Jia-Xian Qin,Lai-Ping Zhang,Xiao-Gang Deng

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
The wave equation is an important physical partial differential equation, and in recent years, deep learning has shown promise in accelerating or replacing traditional numerical methods for solving it. However, existing deep learning methods suffer from high data acquisition costs, low training efficiency, and insufficient generalization capability for boundary conditions. To address these issues, this paper proposes an unsupervised learning method for the wave equation based on finite difference residual constraints. We construct a novel finite difference residual constraint based on structured grids and finite difference methods, as well as an unsupervised training strategy, enabling convolutional neural networks to train without data and predict the forward propagation process of waves. Experimental results show that finite difference residual constraints have advantages over physics-informed neural networks (PINNs) type physical information constraints, such as easier fitting, lower computational costs, and stronger source term generalization capability, making our method more efficient in training and potent in application.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要