Molecular insights into the microbial degradation of sediment-derived DOM in a macrophyte-dominated lake under aerobic and hypoxic conditions

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览2
暂无评分
摘要
The mineralization of dissolved organic matter (DOM) in sediments is an important factor leading to the eutrophication of macrophyte-dominated lakes. However, the changes in the molecular characteristics of sediment-derived DOM during microbial degradation in macrophyte-dominated lakes are not well understood. In this study, the microbial degradation process of sediment-derived DOM in Lake Caohai under aerobic and hypoxic conditions was investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and metagenomics. The results revealed that the microbial degradation of sediment-derived DOM in macrophyte-dominated lakes was more intense under aerobic conditions. The microorganisms mainly metabolized the protein-like substances in the macrophyte-dominated lakes, and the carbohydrate-active enzyme genes and protein/lipid-like degradation genes played key roles in sediment-derived DOM degradation. Organic compounds with high H/C ratios such as lipids, carbohydrates, and protein/lipid-like compounds were preferentially removed by microorganisms during microbial degradation. Meanwhile, there was an increase in the abundance of organic molecular formula with a high aromaticity such as tannins and unsaturated hydrocarbons with low molecular weight and low double bond equivalent. In addition, aerobic/hypoxic environments can alter microbial metabolic pathways of sediment-derived DOM by affecting the relative abundance of microbial communities (e.g., Gemmatimonadetes and Acidobacteria) and functional genes (e.g., ABC.PE.P1 and ABC.PE.P) in macrophyte-dominated lakes. The abundances of lipids, unsaturated hydrocarbons, and protein compounds in aerobic environments decreased by 58 %, 50 %, and 44 %, respectively, compared to in hypoxic environments under microbial degradation. The results of this study deepen our understanding of DOM biodegradation in macrophyte-dominated lakes under different redox environments and provide new insights into nutrients releases from sediment and continuing eutrophication in macrophyte-dominated lakes.
更多
查看译文
关键词
Sediment,Dissolved organic matter,Microbial degradation,Molecular characteristics,Macrophyte-dominated lake
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要