Influence of Season, Storage Temperature and Time of Sample Collection in Pancreatitis-Associated Protein-Based Algorithms for Newborn Screening for Cystic Fibrosis.

Pia Maier, Sumathy Jeyaweerasinkam, Janina Eberhard, Lina Soueidan,Susanne Hämmerling, Dirk Kohlmüller,Patrik Feyh,Gwendolyn Gramer,Sven F Garbade,Georg F Hoffmann,Jürgen G Okun,Olaf Sommerburg

International journal of neonatal screening(2024)

引用 0|浏览9
暂无评分
摘要
Newborn screening (NBS) for cystic fibrosis (CF) based on pancreatitis-associated protein (PAP) has been performed for several years. While some influencing factors are known, there is currently a lack of information on the influence of seasonal temperature on PAP determination or on the course of PAP blood concentration in infants during the first year of life. Using data from two PAP studies at the Heidelberg NBS centre and storage experiments, we compared PAP determinations in summer and winter and determined the direct influence of temperature. In addition, PAP concentrations measured in CF-NBS, between days 21-35 and 36-365, were compared. Over a 7-year period, we found no significant differences between PAP concentrations determined in summer or winter. We also found no differences in PAP determination after 8 days of storage at 4 °C, room temperature or 37 °C. When stored for up to 3 months, PAP samples remained stable at 4 °C, but not at room temperature (p = 0.007). After birth, PAP in neonatal blood showed a significant increasing trend up to the 96th hour of life (p < 0.0001). During the first year of life, blood PAP concentrations continued to increase in both CF- (36-72 h vs. 36-365 d p < 0.0001) and non-CF infants (36-72 h vs. 36-365 d p < 0.0001). Seasonal effects in central Europe appear to have a limited impact on PAP determination. The impact of the increase in blood PAP during the critical period for CF-NBS and beyond on the applicability and performance of PAP-based CF-NBS algorithms needs to be re-discussed.
更多
查看译文
关键词
cystic fibrosis,newborn screening,PAP,seasonal effect,temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要