Quantum State Obfuscation from Classical Oracles

IACR Cryptol. ePrint Arch.(2024)

引用 0|浏览4
暂无评分
摘要
A major unresolved question in quantum cryptography is whether it is possible to obfuscate arbitrary quantum computation. Indeed, there is much yet to understand about the feasibility of quantum obfuscation even in the classical oracle model, where one is given for free the ability to obfuscate any classical circuit. In this work, we develop a new array of techniques that we use to construct a quantum state obfuscator, a powerful notion formalized recently by Coladangelo and Gunn (arXiv:2311.07794) in their pursuit of better software copy-protection schemes. Quantum state obfuscation refers to the task of compiling a quantum program, consisting of a quantum circuit C with a classical description and an auxiliary quantum state |ψ⟩, into a functionally-equivalent obfuscated quantum program that hides as much as possible about C and |ψ⟩. We prove the security of our obfuscator when applied to any pseudo-deterministic quantum program, i.e. one that computes a (nearly) deterministic classical input / classical output functionality. Our security proof is with respect to an efficient classical oracle, which may be heuristically instantiated using quantum-secure indistinguishability obfuscation for classical circuits. Our result improves upon the recent work of Bartusek, Kitagawa, Nishimaki and Yamakawa (STOC 2023) who also showed how to obfuscate pseudo-deterministic quantum circuits in the classical oracle model, but only ones with a completely classical description. Furthermore, our result answers a question of Coladangelo and Gunn, who provide a construction of quantum state indistinguishability obfuscation with respect to a quantum oracle. Indeed, our quantum state obfuscator together with Coladangelo-Gunn gives the first candidate realization of a “best-possible” copy-protection scheme for all polynomial-time functionalities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要