High leaching potential combined with a low leaching amount of fertilizer-derived nitrate in conservation tillage cropland of Northeast China.

The Science of the total environment(2024)

引用 0|浏览5
暂无评分
摘要
Stover mulching in no-tillage farming has been widely proposed as an optimized agricultural management practice to increase soil carbon storage and improve fertilizer nitrogen (N) use efficiency in current agroecosystems. However, the regulation of soil internal gross N transformation dynamics on NO3--N leaching potential in response to long-term conservation tillage practices is still lacking. Here, based on a combination of 15N-tracing incubation and in situ monitoring experiments, we investigated the effect of 9-year no-tillage and maize stover mulching on the vertical migration of fertilizer-derived NO3--N into a deeper soil profile and the associated gross NO3--N transformation dynamics in the Mollisol of Northeast China. The net positive NO3--N production rates (varied from 3.14 to 6.22 mg N kg-1 d-1) were observed across all management practices in the studied Mollisol, indicating a relatively high NO3--N leaching potential in the cropland of Northeast China, which was further confirmed by an average of 7.4 % fertilizer-derived NO3--N being vertically transferred to the 80-100 cm soil layer after a complete maize growing period. Compared with traditional ridge tillage, long-term stover mulching in no-tillage farming significantly reduced total NO3--N production by decreasing autotrophic nitrification while simultaneously enhancing total NO3--N consumption by stimulating nitrate reduction and microbial NO3--N immobilization, revealing a markedly reduction of net NO3--N production in the no-tillage agroecosystem. Therefore, converting traditional ridge tillage toward no-tillage with maize stover mulching can effectively decrease fertilizer-derived NO3--N leaching amounts and thus formulate targeted mitigation strategies for sustainable agriculture in Mollisols of Northeast China.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要