Heavy metal tolerance, and metal biosorption by exopolysaccharides produced by bacterial strains isolated from marine hydrothermal vents.

Johnthini Munir Ahamed,Hans-Uwe Dahms,Yeou Lih Huang


Cited 0|Views4
No score
The present study highlights heavy metal tolerance, EPS production, and biosorption capacity of four hydrothermal vent bacterial strains, namely Exiguobacterium aquaticum, Mammaliicoccus sciuri, Micrococcus luteus, and Jeotgalicoccus huakuii against As, Cd, Cr, Cu, Co, Pb and Ni. The biosorption assay showed high removal efficiency of As (83%) by E. aquaticum, Cd (95%) by M. sciuri, Cu (94%) by M. luteus, and Ni (89%) by J. huakuii and their produced EPS with these metals in aqueous solution were 84%, 85%, 98%, and 91%, respectively. The maximum EPS yield was attained by optimized medium composition consisting of 1% Xylose, and 1% NaCl at pH 7. In metal-amended conditions, the four bacterial strains showed induced EPS production in the initial concentrations. SEM with EDX and CLSM images showed that the growth and EPS production of bacterial strains were affected by metal ion concentrations. A phenol sulphuric acid method and BCA assay were used to identify both the carbohydrate and total protein content of four extracted EPS. A DPPH assay revealed that EPS influences free radical scavenging and has a highly enhanced synergistic effect with its antioxidant activity. FT-IR analysis of four extracted EPS showed the shifting of peaks in the functional groups of EPS before and after adsorption of metal ions. At pH 5 and after 60 min contact time metal removal efficiency and adsorption capacity increased as calculated for As, Cd, Cu, and Ni by four extracted EPS: (86%, 20 mg/g), (74%, 19 mg/g), (94%, 60 mg/g) and (89%, 32 mg/g) and (89%, 16 mg/g), (85%, 16 mg/g), (96%, 22 mg/g) and (91%, 16 mg/g), respectively. The Langmuir compared to the Freundlich model was found to better represent the adsorption by EPS providing maximum adsorption capacities for As (34.65 mg/g), Cd (52.88 mg/g), Cu (24.91 mg/g), and Ni (58.38 mg/g).
Translated text
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined