Nrf-2 modulates excitability of hippocampal neurons by regulating ferroptosis and neuroinflammation after subarachnoid hemorrhage in rats

BRAIN RESEARCH BULLETIN(2024)

引用 0|浏览5
暂无评分
摘要
Excitability of hippocampal neurons in subarachnoid hemorrhage (SAH) rats has not been well studied. The rat SAH model was applied in this study to explore the role of nuclear factor E2-related factor (Nrf-2) in the early brain injury of SAH. The neural excitability of CA1 pyramidal cells (PCs) in SAH rats was evaluated by using electrophysiology experiments. Ferroptosis and neuroinflammation were measured by ELISA, transmission electron microscopy and western blotting. Our results indicated that SAH induced neurological deficits, brain edema, ferroptosis, neuroinflammation and neural excitability in rats. Ferrostatin-1 treatment significantly decreased the expression and distribution of IL -1(i, IL -6, IL -10, TGF-(i and TNF-alpha. Inhibiting ferroptosis by ferrostatin-1 can attenuate neural excitability, neurological deficits, brain edema and neuroinflammation in SAH rats. Inhibiting the expression of Nrf-2 significantly increased the neural excitability and the levels of IL -1(i, IL -6, IL -10, TGF-(i and TNF-alpha in Fer-1-treated SAH rats. Taken together, inhibiting the Nrf-2 induces early brain injury, brain edema and the inflammatory response with increasing of neural excitability in Fer-1-treated SAH rats. These results have indicated that inhibiting ferroptosis, neuroinflammation and neural excitability attenuates early brain injury after SAH by regulating the Nrf-2.
更多
查看译文
关键词
Nuclear factor E2-related factor (Nrf-2),Neural excitability,Ferroptosis,Subarachnoid hemorrhage (SAH),Neuroinflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要