Quantum-inspired optical coherence tomography using classical light in a single-photon counting regime

OPTICS LETTERS(2024)

引用 0|浏览10
暂无评分
摘要
Quantum optical coherence tomography (Q-OCT) presents many advantages over its classical counterpart, optical coherence tomography (OCT), provides an increased axial resolution, and is immune to even orders of dispersion. The core of Q-OCT is the quantum interference of negatively cor-related entangled photon pairs which, in the Fourier domain, are observed by means of a joint spectrum measurement. In this work, we explore the use of a spectral approach in a novel configuration where classical light pulses are employed instead of entangled photons. The intensity of these light pulses is reduced to a single photon level. We report theoret-ical analysis along with its experimental validation to show that although such a classical light is much easier to launch into an experimental system, it offers limited benefits com-pared to Q-OCT based on the entangled light. We analyze the differences in the characteristics of the joint spectrum obtained with entangled photons and with classical optical pulses and point out to the differences' source: the lack of the advantage-bringing term in the signal. (c) 2024 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要