Highly Accessible Co-Nx Active Sites-Doped Carbon Framework with Uniformly Dispersed Cobalt Nanoparticles for the Oxygen Reduction Reaction in Alkaline and Neutral Electrolytes

ACS Omega(2023)

引用 0|浏览0
暂无评分
摘要
Porous carbon materials with nitrogen-coordinated transition metal active sites have been widely regarded as appealing alternatives to replace noble metal catalysts in oxygen-based electrochemical reaction activities. However, improving the electrocatalytic activity of transition-metal-based catalysts remains a challenge for widespread application in renewable devices. Herein, we use a simple one-step pyrolysis method to construct a Co nanoparticles/Co-N-x -decorated carbon framework catalyst with a near-total external surface structure and uniform dispersion nanoparticles, which displays promising catalytic activity and superior stability for oxygen reduction reactions in both alkaline and neutral electrolytes, as evidenced by the positive shift of half-wave potential by 44 and 11 mV compared to 20% Pt/C. Excellent electrochemical performance originates from highly accessible Co nanoparticles/Co-N-x active sites at the external surface structure (this is, exposing active sites). The thus-assembled liquid zinc-air battery using the synthesized electrocatalyst as the cathode material delivers a maximum power density of 178 mW cm(-2) with an open circuit potential of 1.48 V and long-term discharge stability over 150 h.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要