Resveratrol modulates the Nrf2/NF-κB pathway and inhibits TSLP-mediated atopic march.

Allergologia et immunopathologia(2024)

引用 0|浏览1
暂无评分
摘要
BACKGROUND:Resveratrol has been found to have anti-inflammatory and anti-allergic properties. The effects of resveratrol on thymic stromal lymphopoietin (TSLP)-mediated atopic march remain unclear. PURPOSE:To explore the potential role of resveratrol in TSLP-mediated atopic march. METHODS:The atopic march mouse model was established by topical application of MC903 (a vitamin D3 analog). Following the treatment with resveratrol, airway resistance in mice was discovered by pulmonary function apparatus, and the number of total cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid was counted. The histopathological features of pulmonary and ear skin tissues, inflammation, and cell infiltration were determined by hematoxylin and eosin staining. The messenger RNA (mRNA) levels of TSLP, immunoglobulin E, interleukin (IL)-4, IL-5, and IL-13 were measured by real-time quantitative polymerase chain reaction. The protein expression of nuclear factor kappa B (NF-κB)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling-associated molecules (p-p65, p65, p-I kappa B kinase alpha (IκBα), IκBα, Nrf2, and TSLP) in lung and ear skin tissues were assessed by Western blot analysis. RESULTS:Resveratrol attenuated airway resistance and infiltration of total cells, eosinophils, and neutrophils in both lung and ear skin tissues. Resveratrol ameliorates serum inflammatory markers in allergic mice. Moreover, the phosphorylation levels of NF-κB pathway-related proteins were significantly reduced by administration of resveratrol in allergic lung and ear skin tissues. Similarly, the protein expression of TSLP in both lung and ear skin tissues was reduced by resveratrol, and Nrf2, a protector molecule, was increased with resveratrol treatment. CONCLUSION:Resveratrol attenuates TSLP-reduced atopic march through ameliorating inflammation and cell infiltration in pulmonary and ear skin tissues by inhibiting the abnormal activation of NF-κB signaling pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要