Construction of 1D/3D Co9S8/Mn0.3Cd0.7S Schottky heterojunction for dramatically boosted photocatalytic H2 evolution performance

Junxin Huang,Bo Chai, Jiangrong Xiao,Xiaohu Zhang,Guozhi Fan,Guangsen Song

Chemical Engineering Journal(2024)

引用 0|浏览7
暂无评分
摘要
One of the most crucial strategies for transforming solar energy into sustainable hydrogen energy is photocatalytic H2 evolution, and constructing an effective and durable photocatalyst remains a difficult task. Herein, a 1D/3D Co9S8/Mn0.3Cd0.7S Schottky heterojunctions were successfully fabricated by three-step hydrothermal procedure, in which 3D Mn0.3Cd0.7S solid solution particles were immobilized on the 1D tube -like Co9S8 surface, allowing for extremely effective charge separation and transfer. Through coupling Co9S8 with Mn0.3Cd0.7S, the photocatalytic H2 evolution activity and stability were significantly boosted. The 7 % Co9S8/Mn0.3Cd0.7S heterojunction possessed the highest photocatalytic activity with the H2 evolution rate of 1586.4 mu mol center dot h-1, which was 3.73 times larger than that of pristine Mn0.3Cd0.7S, corresponding to 21.8 % apparent quantum efficiency (AQE) at 420 nm monochromatic light. The Schottky heterojunction mechanism between Co9S8 and Mn0.3Cd0.7S could plausibly explain the enhanced photocatalytic H2 evolution performance, according to density functional theory (DFT) calculations and ultraviolet photoelectron spectroscopy (UPS) measurements. This investigation would offer the useful insights to develop Co9S8 cocatalyst for application in photocatalytic H2 evolution.
更多
查看译文
关键词
Co 9 S 8 /Mn 0.3 Cd 0.7 S heterojunction,Photocatalytic H 2 evolution,Charge separation and transfer,Photocatalytic mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要