Aggregate assembly of ferrocene functionalized indium-oxo clusters

CHEMICAL SCIENCE(2024)

引用 0|浏览4
暂无评分
摘要
In this study, we synthesized multi-nuclear indium oxide clusters (InOCs) using 1,1 '-ferrocene dicarboxylic acid (H2FcDCA) as the chelating and surface protection ligand. The obtained clusters include the cubane-type heptanuclear InOCs ([In7]) and the sandwich-type thirteen-nuclear InOCs ([In13]). Notably, [In13] represents the highest nuclear number reported within the InOC family. In addition, the presence of labile coordination sites in these clusters allowed for structural modification and self-assembly. A series of [In7] clusters with adjustable band gaps have been obtained and the self-assembly of [In7] clusters resulted in the formation of an Fe-doped dimer, [Fe2In12], and an imidazole-bridged tetramer, [In28]. Similarly, in the case of [In13] clusters, the coordinated water molecules could be replaced by imidazole, methylimidazole, and even a bridged carboxylic acid, allowing the construction of one-dimensional extended structures. Additionally, part of the H2FcDCA could be substituted by pyrazole. This flexibility in replacing solvent molecules offered diverse possibilities for tailoring the properties and structures of the InOCs to suit specific applications. Presented here are a series of ferrocene-functionalized high-nuclear indium-oxo clusters (InOC), containing thirteen-nuclear and cubane-type heptanuclear InOCs. The self-assembly of them leads to the formation of dimers, tetramers, and one-dimensional extended structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要