Zero-Shot Position Debiasing for Large Language Models


引用 0|浏览28
Fine-tuning has been demonstrated to be an effective method to improve the domain performance of large language models (LLMs). However, LLMs might fit the dataset bias and shortcuts for prediction, leading to poor generation performance. Previous works have proven that LLMs are prone to exhibit position bias, i.e., leveraging information positioned at the beginning or end, or specific positional cues within the input. Existing debiasing methods for LLMs require external bias knowledge or annotated non-biased samples, which is lacking for position debiasing and impractical in reality. In this work, we propose a zero-shot position debiasing (ZOE) framework to mitigate position bias for LLMs. ZOE leverages unsupervised responses from pre-trained LLMs for debiasing without relying on any external knowledge. To improve the quality of unsupervised responses, we propose a MSA module to prune these responses. Experiments on eight datasets and five tasks show that ZOE consistently outperforms existing methods in mitigating three types of position biases. Besides, ZOE achieves this by sacrificing only a small performance on biased samples, which is general and effective. To facilitate the reproducibility of the results, we share the code of all methods and datasets on
AI 理解论文
Chat Paper