Branched-chain amino acid catabolic defect promotes α-cell proliferation via activating mTOR signaling

Yulin Yang,Shushu Wang,Chunxiang Sheng, Jialin Tan,Junmin Chen, Tianjiao Li, Xiaoqin Ma,Haipeng Sun,Xiao Wang,Libin Zhou

Molecular and Cellular Endocrinology(2024)

引用 0|浏览6
暂无评分
摘要
Elevated circulating level of branched-chain amino acids (BCAAs) is closely related to the development of type 2 diabetes. However, the role of BCAA catabolism in various tissues in maintaining glucose homeostasis remains largely unknown. Pancreatic α-cells have been regarded as amino acid sensors in recent years. Therefore, we generated α-cell specific branched-chain alpha-ketoacid dehydrogenase E1α subunit (BCKDHA) knockout (BCKDHA-αKO) mice to decipher the effects of BCAA catabolism in α-cells on whole-body energy metabolism. BCKDHA-αKO mice showed normal body weight, body fat, and energy expenditure. Plasma glucagon level and glucose metabolism also remained unchanged in BCKDHA-αKO mice. Whereas, the deletion of BCKDHA led to increased α-cell number due to elevated cell proliferation in neonatal mice. In vitro, only leucine among BCAAs promoted aTC1-6 cell proliferation, which was blocked by the agonist of BCAA catabolism BT2 and the inhibitor of mTOR Rapamycin. Like Rapamycin, BT2 attenuated leucine-stimulated phosphorylation of S6 in αTC1-6 cells. Elevated phosphorylation level of S6 protein in pancreatic α-cells was also observed in BCKDHA-αKO mice. These results suggest that local accumulated leucine due to defective BCAA catabolism promotes α-cell proliferation through mTOR signaling, which is insufficient to affect glucagon secretion and whole-body glucose homeostasis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要