Oxide Ion Conduction in Ca-Doped Yb3Ga5O12 Garnet

Inorganic Chemistry(2023)

引用 0|浏览4
暂无评分
摘要
Developing oxide ion conductors with new structural families is important for many energy conversion and storage techniques. Herein, a series of Ca-doped Yb3Ga5O12 garnet-type materials are prepared through a traditional solid-state reaction method, with their oxide ion conduction properties being reported for the first time. The results revealed that Ca substitution for Yb would significantly improve the conductivity of Yb3Ga5O12 from 3.57 x 10(-7) S/cm at 900 degrees C under air to 1.66 x 10(-4) S/cm, with an oxide ion transporting number of similar to 0.52. The oxygen vacancy defect formation energy (similar to 0.127 eV) and the local structure around an oxygen vacancy were studied by atomic-level static lattice simulations based on the interatomic potential method. The oxide ion conducting mechanism was studied by the bond-valence-based method, which revealed three-dimensional pathways for oxide ion migration in both the parent and Ca-doped structures. The simulated activation energy of oxide ion migration decreased slightly from similar to 0.358 eV in the parent structure to 0.346 eV in the doped one. These discoveries in the Ca-doped Yb3Ga5O12 will stimulate extensive exploitation and fundamental research on garnet-type materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要