Cellular Senescence Impairs Tendon Extracellular Matrix Remodeling in Response to Mechanical Unloading

Emma J Stowe, Madelyn R Keller,Brianne K Connizzo

biorxiv(2023)

引用 0|浏览4
暂无评分
摘要
Musculoskeletal injuries, including tendinopathies, present a significant clinical burden for aging populations. While the biological drivers of age-related declines in tendon function are poorly understood, it is well accepted that dysregulation of extracellular matrix (ECM) remodeling plays a role in chronic tendon degeneration. Senescent cells, which have been associated with multiple degenerative pathologies in musculoskeletal tissues, secrete a highly pro-inflammatory senescence-associated secretory phenotype (SASP) that has potential to promote ECM breakdown. However, the role of senescent cells in the dysregulation of tendon ECM homeostasis is largely unknown. To assess this directly, we developed an in vitro model of induced cellular senescence in murine tendon explants. This novel technique enables us to study the isolated interactions of senescent cells and their native ECM without interference from age-related systemic changes. We document multiple biomarkers of cellular senescence in induced tendon explants including cell cycle arrest, apoptosis resistance, and SASP production. We then utilize this in vitro senescence model to compare the ECM remodeling response of young, naturally aged, and senescent tendons to an altered mechanical stimulus. We found that both senescence and aging independently led to alterations in ECM-related gene expression, reductions in protein synthesis, and tissue compositional changes. Furthermore, MMP activity was sustained, thus shifting the remodeling balance of aged and senescent tissues towards degradation over production. Together, this demonstrates that cellular senescence plays a role in the altered mechano-response of aged tendons and likely contributes to poor clinical outcomes in aging populations. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要