Silicon Microstrip Detector for Studying Fast Processes on a Synchrotron Beam

Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques(2023)

引用 0|浏览3
暂无评分
摘要
In this paper, we describe the current state of development of a prototype detector for the study of fast processes (DIMEX) based on a silicon microstrip sensor. The silicon microstrip sensor is made of n -type silicon with p -type implants in the form of strips. Aluminum contacts with microwelding pads at the ends are applied to the strips along the entire length. The signals from the strips are read using a DMXS6A integrated circuit specially designed for this project, which contains six recording electronic channels with a dark-current compensation circuit at the input, four integrators, 32 analog memory cells, and an analog shift register. Each sensor strip is connected to the guard ring through a 400-Ω resistor and to the recording-channel input through a 100-kΩ resistor. This resistive divider at the input of the recording channel makes it possible to adapt the dynamic range of the recording microcircuit integrator to the full range of photon-flux changes in synchrotron-radiation output channel no. 8 of the VEPP-4M storage ring equipped with a nine-pole wiggler with a field of 1.95 T as the source of synchrotron radiation. Measurements of the dynamic range of the DIMEX-Si prototype show that the maximal flux that can be recorded in the linear mode exceeds 10 5 photons/channel from each electron bunch in the storage ring. The ability of the detector to detect signals from bunches following after 55 ns in the multi-bunch mode, which simulates the operation of the 4+-generation synchrotron-radiation source Siberian Circular Photon Source (SKIF) under construction in the Novosibirsk region, on which such a detector is planned to be used, is also demonstrated.
更多
查看译文
关键词
fast processes,detonation processes,coordinate detectors,time-resolved detectors,electronic recording channel,microstrip silicon detector,specialized integrated circuit,synchrotron radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要