Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material

Nano-Micro Letters(2024)

引用 0|浏览2
暂无评分
摘要
Highlights An air-breathing chemical self-charge concept of oxygen-enriched carbon cathode. The oxygen-enriched carbon material with abundant catechol groups. Rapid air-oxidation chemical self-charge of catechol groups. Abstract The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting, conversion and storage without an external power supply. However, most self-charging designs assembled by multiple energy harvesting, conversion and storage materials increase the energy transfer loss; the environmental energy supply is generally limited by climate and meteorological conditions, hindering the potential application of these self-powered devices to be available at all times. Based on aerobic autoxidation of catechol, which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge, we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho -quinone groups. Energy harvesting, conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials. Moreover, the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications. This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
更多
查看译文
关键词
Carbon material,Oxygen functionality,Air oxidation self-charge
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要