Strong coupling in mechanically flexible free-standing organic membranes

JOURNAL OF CHEMICAL PHYSICS(2023)

引用 0|浏览6
暂无评分
摘要
Strong coupling of a confined optical field to the excitonic or vibronic transitions of a molecular material results in the formation of new hybrid states called polaritons. Such effects have been extensively studied in Fabry-Perot microcavity structures where an organic material is placed between two highly reflective mirrors. Recently, theoretical and experimental evidence has suggested that strong coupling can be used to modify chemical reactivity as well as molecular photophysical functionalities. However, the geometry of conventional microcavity structures limits the ability of molecules "encapsulated" in a cavity to interact with their local environment. Here, we fabricate mirrorless organic membranes that utilize the refractive index contrast between the organic active material and its surrounding medium to confine an optical field with Q-factor values up to 33. Using angle-resolved white light reflectivity measurements, we confirm that our structures operate in the strong coupling regime, with Rabi-splitting energies between 60 and 80 meV in the different structures studied. The experimental results are matched by transfer matrix and coupled oscillator models that simulate the various polariton states of the free standing membranes. Our work demonstrates that mechanically flexible and easy-to-fabricate free standing membranes can support strong light-matter coupling, making such simple and versatile structures highly promising for a range of polariton applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要