Renoprotective effects of extracellular fibroblast specific protein 1 via nuclear factor erythroid 2-related factor-mediated antioxidant activity

Scientific reports(2023)

引用 0|浏览6
暂无评分
摘要
Podocyte expression of fibroblast specific protein 1 (FSP1) is observed in various types of human glomerulonephritis. Considering that FSP1 is secreted extracellularly and has been shown to have multiple biological effects on distant cells, we postulated that secreted FSP1 from podocytes might impact renal tubules. Our RNA microarray analysis in a tubular epithelial cell line (mProx) revealed that FSP1 induced the expression of heme oxygenase 1, sequestosome 1, solute carrier family 7, member 11, and cystathionine gamma-lyase, all of which are associated with nuclear factor erythroid 2-related factor (Nrf2) activation. Therefore, FSP1 is likely to exert cytoprotective effects through Nrf2-induced antioxidant activity. Moreover, in mProx, FSP1 facilitated Nrf2 translocation to the nucleus, increased levels of reduced glutathione, inhibited the production of reactive oxygen species (ROS), and reduced cisplatin-induced cell death. FSP1 also ameliorated acute tubular injury in mice with cisplatin nephrotoxicity, which is a representative model of ROS-mediated tissue injury. Similarly, in transgenic mice that express FSP1 specifically in podocytes, tubular injury associated with cisplatin nephrotoxicity was also mitigated. Extracellular FSP1 secreted from podocytes acts on downstream tubular cells, exerting renoprotective effects through Nrf2-mediated antioxidant activity. Consequently, podocytes and tubular epithelial cells have a remote communication network to limit injury.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要