Integrated omics analysis unveils a DNA damage response to neurogenic injury.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览3
暂无评分
摘要
Spinal cord injury (SCI) evokes profound bladder dysfunction. Current treatments are limited by a lack of molecular data to inform novel therapeutic avenues. Previously, we showed systemic inosine treatment improved bladder function following SCI in rats. Here, we applied multi-omics analysis to explore molecular alterations in the bladder and their sensitivity to inosine following SCI. Canonical pathways regulated by SCI included those associated with protein synthesis, neuroplasticity, wound healing, and neurotransmitter degradation. Upstream regulator analysis identified MYC as a key regulator, whereas causal network analysis predicted multiple regulators of DNA damage response signaling following injury, including PARP-1. Staining for both DNA damage (γH2AX) and PARP activity (poly-ADP-ribose) markers in the bladder was increased following SCI, and attenuated in inosine-treated tissues. Proteomics analysis suggested that SCI induced changes in protein synthesis-, neuroplasticity-, and oxidative stress-associated pathways, a subset of which were shown in transcriptomics data to be inosine-sensitive. These findings provide novel insights into the molecular landscape of the bladder following SCI, and highlight a potential role for PARP inhibition to treat neurogenic bladder dysfunction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要