Robust PbO2 modified by co-deposition of ZrO2 nanoparticles for efficient degradation of ceftriaxone sodium.

Environmental science and pollution research international(2023)

引用 0|浏览0
暂无评分
摘要
In recent years, PbO2 electrodes have received widespread attention due to their high oxygen evolution reaction (OER) activity. However, due to the brittle nature of the plating layer, it is easy to cause the active layer to fall off. Pb2+ will leach out with the electrochemical process causing secondary pollution. The starting point of this study is established to improve the stability and adhesion of the electrode coating. Electrochemical oxidation technology has the characteristics of high treatment efficiency, wide range of applications, and non-polluting environment. In this study, conventional PbO2 electrodes were modified by using co-deposition of ZrO2 nanoparticles. In addition, α-PbO2 was added to increase the stability of the electrodes. At a high current density of 1 A/cm2, the accelerated life of the pure PbO2 electrode is 648 h, the accelerated life of the PbO2-ZrO2 electrode is 1.37 times that of the pure PbO2, and the electrode with an added α-PbO2 layer is 1.69 times that of the pure PbO2 electrode. The amount of dissolved Pb2+ was only 29% of that of pure PbO2. The electrochemical performance of the electrode is evaluated by studying the degradation effect of ceftriaxone sodium (CXM). The addition of ZrO2 nanoparticles alters the particle size and deposition content of PbO2, leading to a unique crystal structure distinct from pure PbO2. Compared to conventional PbO2 electrodes, the PbO2-ZrO2 can remove chemical oxygen demand (COD) and pollutants more efficiently, removing for 59% increased by 38.47%. Therefore, PbO2-ZrO2 is of great value in the field of electrochemical degradation of industrial pollutants.
更多
查看译文
关键词
PbO2-ZrO2 composite electrode,Advanced oxidation process,Electrochemical degradation,Ceftriaxone sodium,Water treatment,High performance liquid chromatography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要