UltraClean: A Simple Framework to Train Robust Neural Networks against Backdoor Attacks

CoRR(2023)

引用 0|浏览6
暂无评分
摘要
Backdoor attacks are emerging threats to deep neural networks, which typically embed malicious behaviors into a victim model by injecting poisoned samples. Adversaries can activate the injected backdoor during inference by presenting the trigger on input images. Prior defensive methods have achieved remarkable success in countering dirty-label backdoor attacks where the labels of poisoned samples are often mislabeled. However, these approaches do not work for a recent new type of backdoor -- clean-label backdoor attacks that imperceptibly modify poisoned data and hold consistent labels. More complex and powerful algorithms are demanded to defend against such stealthy attacks. In this paper, we propose UltraClean, a general framework that simplifies the identification of poisoned samples and defends against both dirty-label and clean-label backdoor attacks. Given the fact that backdoor triggers introduce adversarial noise that intensifies in feed-forward propagation, UltraClean first generates two variants of training samples using off-the-shelf denoising functions. It then measures the susceptibility of training samples leveraging the error amplification effect in DNNs, which dilates the noise difference between the original image and denoised variants. Lastly, it filters out poisoned samples based on the susceptibility to thwart the backdoor implantation. Despite its simplicity, UltraClean achieves a superior detection rate across various datasets and significantly reduces the backdoor attack success rate while maintaining a decent model accuracy on clean data, outperforming existing defensive methods by a large margin. Code is available at https://github.com/bxz9200/UltraClean.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要