Cost-aware modeling and operation of interconnected multi-energy microgrids considering environmental and resilience impact

APPLIED ENERGY(2024)

引用 0|浏览2
暂无评分
摘要
Multi-energy microgrids (mMGs) are gaining rapid popularity due to the incorporation of multiple types of energy sources. Given the importance of mMGs in future energy networks, resilient, accurate economic, and environmental assessments of mMGs, as well as their interconnection, have become immense challenges. To deal with this problem, this paper presents a resilient optimization method for optimal sizing and operation of renewable-based mMGs to meet electricity and heating demand. The primary goals of this research are to reduce the system's overall energy cost, ensure continuous power supply during power outages, and reduce environmental emission rates in mMGs enriched by the combined heat and power (CHP) unit, photovoltaic (PV), boiler unit, battery, thermal energy storage (TES), and geothermal heat pump (GHP) technologies. Game theory concepts, such as nucleolus and Shapley value, are leveraged to allocate costs between interconnected mMGs running under a coalitional paradigm, resulting in a lower optimized cost. Further, a techno-economic analysis is performed to investigate the performance of the proposed system over the business as usual (BaU) case. The results affirm the lucrativeness of the proposed model and the substantial reduction in life cycle cost, utility cost, and emission while remaining outage resilient.
更多
查看译文
关键词
Multi-energy microgrids (mMGs),Environmental impact,Resilience,Grid outages,Interconnection,Game theory,Affordable and clean energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要