Aleth-NeRF: Illumination Adaptive NeRF with Concealing Field Assumption

AAAI 2024(2024)

引用 0|浏览4
暂无评分
摘要
The standard Neural Radiance Fields (NeRF) paradigm employs a viewer-centered methodology, entangling the aspects of illumination and material reflectance into emission solely from 3D points. This simplified rendering approach presents challenges in accurately modeling images captured under adverse lighting conditions, such as low light or over-exposure. Motivated by the ancient Greek emission theory that posits visual perception as a result of rays emanating from the eyes, we slightly refine the conventional NeRF framework to train NeRF under challenging light conditions and generate normal-light condition novel views unsupervisedly. We introduce the concept of a ``Concealing Field," which assigns transmittance values to the surrounding air to account for illumination effects. In dark scenarios, we assume that object emissions maintain a standard lighting level but are attenuated as they traverse the air during the rendering process. Concealing Field thus compel NeRF to learn reasonable density and colour estimations for objects even in dimly lit situations. Similarly, the Concealing Field can mitigate over-exposed emissions during rendering stage. Furthermore, we present a comprehensive multi-view dataset captured under challenging illumination conditions for evaluation. Our code and proposed dataset are available at https://github.com/cuiziteng/Aleth-NeRF.
更多
查看译文
关键词
CV: 3D Computer Vision,ML: Transfer, Domain Adaptation, Multi-Task Learning,CV: Computational Photography, Image & Video Synthesis,CV: Low Level & Physics-based Vision,ML: Deep Learning Algorithms,ML: Deep Learning Theory,ML: Semi-Supervised Learning,ML: Transparent, Interpretable, Explainable ML,ML: Unsupervised & Self-Supervised Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要