Temporal differentiation in the adaptation of functional bacteria to low-temperature stress in partial denitrification and anammox system

ENVIRONMENTAL RESEARCH(2024)

引用 1|浏览2
暂无评分
摘要
Despite reliable nitrite supply through partial denitrification, the adaptation of denitrifying bacteria to low temperatures remains elusive in partial denitrification and anammox (PDA) systems. Here, temporal differentiations of the structure, activity, and relevant cold-adaptation mechanism of functional bacteria were investigated in a lab-scale PDA bioreactor at decreased temperature. Although distinct denitrifying bacteria dominated after low-temperature stress, both short- and long-term stresses exerted differential selectivity towards the species with close phylogenetic distance. Species Azonexus sp.149 showed high superiority over Azonexus sp.384 under short-term stress, and long-term stress improved the adaptation of Aquabacterium sp.93 instead of Aquabacterium sp.184. The elevated transcription of nitrite reductase genes suggested that several denitrifying bacteria (e.g., Azonexus sp.149) could compete with anammox bacteria for nitrite. Species Rivicola pingtungensis and Azonexus sp.149 could adapt through various adaptation pathways, such as the two-component system, cold shock protein (CSP), membrane alternation, and electron transport chain. By contrast, species Zoogloea sp.273 and Aquabacterium sp.93 mainly depended on the CSP and oxidative stress response. This study largely deepens our understanding of the performance deterioration in PDA systems during cold shock and provides several references for efficient adaptation to seasonal temperature fluctuation.
更多
查看译文
关键词
Partial denitrification and anammox,Low temperature,Temporal differentiation,Cold shock protein,Cold-adaptation pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要