Engineering interfacial architectures toward nitrate electrocatalysis and nitrogen neutral cycle

Lin Gu, Hongxia Luo, Yingbing Zhang, Yuting Cong,Min Kuang,Jianping Yang

MATERIALS CHEMISTRY FRONTIERS(2024)

引用 0|浏览4
暂无评分
摘要
The presence of excessive nitrate ions in the environment disrupts the nitrogen neutral cycle and poses a significant threat to both the environment and human health. Electrocatalytic nitrate reduction reaction, powered by renewable electricity, presents a promising approach to achieve nitrogen neutrality by converting nitrate back into nitrogen and valuable chemicals. The development of robust electrocatalysts with high activity is of utmost importance for the industrial application of nitrate electrocatalysis. The establishment of a specialized interface is expected to enhance the activity of functional electrocatalysts through the optimization of intermediate adsorption and desorption, acceleration of charge transport, and regulation of the local catalytic environment. This review aims to underscore the recent advancements in interface engineering for efficient nitrate electrocatalysis, with the purpose of providing new insights and guidance for future research directions and best practices. First, the mechanisms of nitrate electrocatalysis are discussed to understand the effects of special interface on the performance of nitrate electrocatalysis. Then, the construction strategies, interface effects, as well as the up-to-date overviews of interface engineering in nitrate electrocatalysis, are analyzed and discussed in detail. Finally, we offer some perspectives on the future outlook of interface engineering in the context of nitrate electrocatalysis. Interface engineering is an important way to prepare high performance catalysts. In this review, we discuss synthesis strategies, the main types of interface engineering for efficient nitrate electrocatalysis and their special effects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要