Integral precession calibration method of PIGA on linear vibration table

Changzheng Sun,Shunqing Ren, Jianjun Cao,Ru Huo

Chinese Journal of Aeronautics(2023)

引用 0|浏览0
暂无评分
摘要
Linear vibration table can provide harmonic accelerations to excite the nonlinear error terms of Pendulous Integrating Gyro Accelerometer (PIGA). Integral precession calibration method is proposed to calibrate PIGA on a linear vibration table in this paper. Based on the precise expressions of PIGA’s inputs, the error calibration model of PIGA is established. Precession angular velocity errors of PIGA are suppressed by integer periodic precession and the errors caused by non-integer periods vibrating are compensated. The complete calibration process, including planning, preparation, PIGA testing, and coefficient identification, is designed to optimize the test operations and evaluate the calibration results. The effect of the main errors on calibration uncertainty is analyzed and the relative sensitivity function is proposed to further optimize the test positions. Experimental and simulation results verify that the proposed 10-position calibration method can improve calibration uncertainties after compensating for the related errors. The order of calibration uncertainties of the second- and third-order coefficients are decreased to 10−8 (rad·s−1)/g2 and 10−8 (rad·s−1)/g3, respectively. Compared with the other two classical calibration methods, the calibration uncertainties of PIGA’s nonlinear error coefficients can be effectively reduced and the proportional residual errors are decreased less than 3×10−6 (rad·s−1)/g by using the proposed calibration method.
更多
查看译文
关键词
integral precession calibration method,vibration,piga
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要