WeChat Mini Program
Old Version Features

Maintenance Optimization for Multi-Component Systems with a Single Sensor

European Journal of Operational Research(2024)

Eindhoven Univ Technol

Cited 1|Views10
Abstract
We consider a multi-component system in which a single sensor monitors a condition parameter. Monitoring gives the decision maker partial information about the system state, but it does not reveal the exact state of the components. Each component follows a discrete degradation process, possibly correlated with the degradation of other components. The decision maker infers a belief about each component’s exact state from the current condition signal and the past data, and uses that to decide when to intervene for maintenance. A maintenance intervention consists of a complete and perfect inspection, and may be followed by component replacements. We model this problem as a partially observable Markov decision process. For a suitable stochastic order, we show that the optimal policy partitions in at most three regions on stochastically ordered line segments. Furthermore, we show that in some instances, the optimal policy can be partitioned into two regions on line segments. In two examples, we visualize the optimal policy. To solve the examples, we modify the incremental pruning algorithm, an exact solution algorithm for partially observable Markov decision processes. Our modification has the potential to also speed up the solution of other problems formulated as partially observable Markov decision processes.
More
Translated text
Key words
Maintenance,Condition-based maintenance,Multi-component systems,Partially observable Markov decision process,Inspection planning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined