Ballistic performance of additive manufacturing 316l stainless steel projectiles based on topology optimization method

Defence Technology(2023)

引用 0|浏览4
暂无评分
摘要
Material and structure made by additive manufacturing (AM) have received much attention lately due to their flexibility and ability to customize complex structures. This study first implements multiple objective topology optimization simulations based on a projectile perforation model, and a new topologic projectile is obtained. Then two types of 316L stainless steel projectiles (the solid and the topology) are printed in a selective laser melt (SLM) machine to evaluate the penetration performance of the projectiles by the ballistic test. The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles, indicating the better penetration ability of the topologic projectiles. Finally, microscopic studies (scanning electron microscope and X-ray micro-CT) are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles. An explicit dynamics simulation was also performed, and the failure locations of the residual topologic projectiles were in good agreement with the experimental results, which can better guide the design of new projectiles combining AM and topology optimization in the future.
更多
查看译文
关键词
Additive manufacturing,Topology optimization,Ballistic performance,Projectile design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要