Optimizing Li Ion Transport in a Garnet-Type Solid Electrolyte via a Grain Boundary Design

BATTERIES-BASEL(2023)

引用 0|浏览2
暂无评分
摘要
Garnet-type solid electrolytes have gained considerable attention owing to their exceptional ionic conductivity and broad electrochemical stability window, making them highly promising for solid-state batteries (SSBs). However, this polycrystalline ceramic electrolyte contains an abundance of grain boundaries (GBs). During the repetitive electroplating and stripping of Li ions, uncontrolled growth and spreading of lithium dendrites often occur at GBs, posing safety concerns and resulting in a shortened cycle life. Reducing the formation and growth of lithium dendrites can be achieved by rational grain boundary design. Herein, the garnet-type solid electrolyte LLZTO was firstly coated with Al2O3 using the atomic layer deposition (ALD) technique. Subsequently, an annealing treatment was employed to introduce Al2O3 into grain boundaries, effectively modifying them. Compared with the Li/LLZTO/Li cells, the Li/LLZTO@Al2O3-annealed/Li symmetric batteries exhibit a more stable cycling performance with an extended period of 200 h at 1 mA cm-2. After matching with the NMC811 cathode, the capacity retention rate of batteries can reach 96.8% after 50 cycles. The infusion of Al2O3 demonstrates its capability to react with LLZTO particles, creating an ion-conducting interfacial layer of Li-Al-O at the GBs. This interfacial layer effectively inhibits Li nucleation and filament growth within LLZTO, contributing to the suppression of lithium dendrites. Our work provides new suggestions for optimizing the synthesis of solid-state electrolytes, which can help facilitate the commercial application of solid-state batteries.
更多
查看译文
关键词
lithium metal batteries,solid state electrolyte,ALD,grain boundaries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要