NaHCO3‐induced porous PbI2 enabling efficient and stable perovskite solar cells

InfoMat(2023)

引用 6|浏览6
暂无评分
摘要
Abstract Driven by their many unique features, perovskite solar cells (PSCs) have become one of the most promising candidates in the photovoltaic field. Two‐step preparation of perovskite film is advantageous for its higher stability and reproducibility compared to the one‐step method, which is more suitable for practical application. However, the incomplete conversion of the dense lead iodide (PbI 2 ) layer during the sequential spin‐coating of formamidinium/methylammonium (FA + /MA + ) organic amine salts severely affect the performance of PSCs. Herein, sodium bicarbonate (NaHCO 3 ) is used to induce the formation of porous PbI 2 , which facilitates the penetration of the FA + /MA + ions and the formation of a perovskite film with high crystallinity and large grain microstructure. Meanwhile, the introduction of Na + not only improves the energetic alignment of the PSC, but also increases the conductivity via p‐doping. As a result, the optimized NaHCO 3 ‐modified PSC achieves a champion power conversion efficiency of 24.0% with suppressed hysteresis. Moreover, the significant reduction in defect density and ion migration as well as a mild alkaline environment enhance the stability of device. The unencapsulated NaHCO 3 ‐modified PSCs maintain over 90% of their original efficiency upon storage in ambient air (30%–40% relative humidity) for 2160 h. We have demonstrated an ingenious strategy for controlling the quality of perovskite and improving the performance of device by low‐temperature foaming of simple inorganic molecules of NaHCO 3 . image
更多
查看译文
关键词
stable perovskite solar cells,solar cells,<scp>pbi<sub>2</sub></scp>
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要