3D genome organization and its study in livestock breeding

JOURNAL OF INTEGRATIVE AGRICULTURE(2024)

引用 0|浏览7
暂无评分
摘要
Eukaryotic genomes are hierarchically packaged into cell nucleus, affecting gene regulation. The genome is organized into multiscale structural units, including chromosome territories, compartments, topologically associating domains (TADs), and DNA loops. The identification of these hierarchical structures has benefited from the development of experimental approaches, such as 3C-based methods (Hi-C, ChIA-PET, etc.), imaging tools (2D-FISH, 3D-FISH, Cryo-FISH, etc.) and ligation-free methods (GAM, SPRITE, etc.). In recent two decades, numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms, such as regulating enhancer activity and promoter-enhancer interactions. However, there are relatively few studies about the 3D genome in livestock species. Therefore, studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits. In this review, we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies, drawing inspiration to explore the 3D genomics of livestock species. We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding.
更多
查看译文
关键词
3D genome organization,3D genomic methodology,regulatory mechanisms,muscle development,livestock breeding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要