Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis

Nano Materials Science(2023)

引用 0|浏览2
暂无评分
摘要
High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater. Herein, a heterogeneous-structured catalyst is constructed by depositing NiFe-layered double hydroxides (NiFe-LDH) on the substrate of MXene (V2CTx) modified Ni foam (NF), and abbreviated as NiFe-LDH/V2CTx/NF. As demonstrated, owing to the intrinsic negative charge characteristic of V2CTx, chlorine ions are denied entry to the interface between NiFe-LDH and V2CTx/NF substrate, thus endowing NiFe-LDH/V2CTx/NF catalyst with high corrosion resistance and durable stability for 110 ​h at 500 ​mA ​cm−2. Meanwhile, the two-dimensional structure and high electrical conductivity of V2CTx can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer, thereby synergistically promoting the catalytic performance of NiFe-LDH/V2CTx/NF in both deionized water electrolyte (261 ​mV at 100 ​mA ​cm−2) and simulated seawater electrolyte (241 ​mV at 100 ​mA ​cm−2). This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.
更多
查看译文
关键词
NiFe-LDH/V2CTx/NF catalyst,Oxygen evolution reaction,Seawater electrolysis,Chlorine inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要