Comparative evaluation of the effect of 2% graphene oxide and 5% hydroxyapatite nanoparticles in isolation and in combination on micro tensile bond strength of 5th generation adhesive

F1000Research(2023)

引用 1|浏览0
暂无评分
摘要
Graphene is the thinnest, strongest and stiffest imaginable material. The biocompatible property of graphene oxide can initiate and facilitate cell adhesion, proliferation and differentiation of periodontal ligament, osteogenic and oral epithelial cells. Furthermore, the antibiofilm and anti-adhesion properties of graphene oxide in prevention of dental biofilm infections, dental caries, dental erosion as well as for implant surface modification and as anti-quorum sensing agent. Composites are most often utilised materials for restoration in the field of dentistry due to adhesive resins' improved mechanical and cosmetic properties. To safeguard the dentin and prevent dental cavities, dentin adhesives are utilised to affix hydrophobic resin composites to hydrophilic dentin tissue. Dental adhesives have a harder time adhering to dentin because it contains more water and is less mineralized than enamel. This makes the method more sensitive. As a result, it was chosen to assess and contrast the impact of 5% Hydroxyapatite nanoparticles and 2% Graphene oxide nanoparticles, both separately and together, on the Micro tensile bond strength of 5th generation adhesive. Graphene oxide is the most versatile form of Graphite in structural and functional configuration. Graphene oxide possess extraordinary physical, chemical, optical, electrical and mechanical properties. Among the graphene family nanomaterials, the reduced form of Graphite adding the oxygenated functional group to the structure increases the surface area and therefore exhibits enviable excellent interaction ability with metal and ions as well as organic species. Graphene oxide in dentistry has provided outstanding results in antimicrobial action, regenerative dentistry, bone tissue engineering, drug delivery, physicochemical property, enhancement of dental biomaterials and oral cancer treatment.
更多
查看译文
关键词
graphene oxide,cicro tensile bond strength,nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要