A sequential acid-base mechanism in the interstellar medium: The emergence of cis-formic acid in dark molecular clouds

Astronomy and Astrophysics(2023)

引用 0|浏览2
暂无评分
摘要
The abundance ratios between isomers of a COM observed in the ISM provides valuable information about the chemistry and physics of the gas and eventually, the history of molecular clouds. In this context, the origin of an abundance of c-HCOOH acid of only 6% the isomer c-HCOOH abundance in cold cores, remains unknown. Herein, we explain the presence of c-HCOOH in dark molecular clouds through the destruction and back formation of c-HCOOH and t-HCOOH in a cyclic process that involves HCOOH and highly abundant molecules such as HCO+ and NH3. We use high-level ab initio methods to compute the potential energy profiles for the cyclic destruction/formation routes of c-HCOOH and t-HCOOH. Global rate constants and branching ratios were calculated based on the transition state theory and the master equation formalism under the typical conditions of the ISM. The destruction of HCOOH by reaction with HCO+ in the gas phase leads to three isomers of the cation HC(OH)2+. The most abundant cation can react in a second step with other abundant molecules of the ISM like NH3 to form back c-HCOOH and t-HCOOH. This mechanism explains the formation of c-HCOOH in dark molecular clouds. Considering this mechanism, the fraction of c-HCOOH with respect t-HCOOH is 25.7%. To explain the 6% reported by the observations we propose that further destruction mechanisms of the cations of HCOOH should be taken into account. The sequential acid-base (SAB) mechanism proposed in this work involves fast processes with very abundant molecules in the ISM. Thus, HCOOH very likely suffers our proposed transformations in the conditions of dark molecular clouds. This is a new approach in the framework of the isomerism of organic molecules in the ISM which has the potential to try to explain the ratio between isomers of organic molecules detected in the ISM.
更多
查看译文
关键词
interstellar medium,molecular,acid-base,cis-formic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要