Abstract 5779: A platform utilizing high-grade serous ovarian cancer organoids for prospective patient stratification in functional precision medicine

Cancer Research(2023)

引用 0|浏览7
暂无评分
摘要
High-grade serous ovarian cancer (HGSC) is the most prevalent and lethal ovarian cancer type. While HGSC usually responds well to primary treatment, most cases eventually relapse. Functional precision medicine - tailoring individualized treatments based on functional in vitro assays on patient-derived cells - has been recently employed in cancer clinical trials. Cancer organoids - three-dimensional, self-organizing, self-renewing cell cultures that recapitulate original tissue structure and function - have been applied as cellular models in these trials. However, in case of HGSC, organoid derivation has proven time consuming and inefficient, hindering their application in functional precision medicine due to a short time window, in which therapy for each patient needs to be selected. To address this problem, we aimed to establish whether drug vulnerabilities at HGSC relapse could be predicted using organoids derived from the primary disease cells. We derived sequential organoid models from material sampled during primary treatment and at relapse. Then, for organoid pairs (primary-relapse), we performed large-scale drug response profiling of a library of 370 compounds (approved drugs or drugs in clinical development), in 384-well microplate format, alone or in combination with a standard HGSC chemotherapeutic agent carboplatin. First, we found that HGSC organoid responses to standard chemotherapeutics retrospectively correlated to observed clinical treatment outcomes. But further, for each patient we identified compounds with pronounced cytotoxicity both in the primary and in the relapsed model, amounting to 66% of all hits (7% were primary-specific and 27% relapse-specific). We then focused on identifying patient-specific hits rather than compounds displaying general toxicity in all patient models. Based on a potential clinical applicability, for three patients we selected compounds for validation in organoid outgrowth assay, with prolonged (>1 month) drug-free period post-treatment. In two patients, AZD4573, a selective CDK9 inhibitor in clinical development for hematological malignancies, at nanomolar concentrations caused eradication of organoids when combined with carboplatin. Organoids from the third patient were vulnerable to nitazoxanide, an approved anti-helminthic agent and an inhibitor of mitochondrial oxidative phosphorylation. Importantly, the selected final hits were identified solely based on screening in organoid models from primary disease. In summary, we here demonstrate that HGSC organoids derived from primary disease material predict a majority of patient-specific drug vulnerabilities of organoids derived from the relapsed HGSC lesions. This indicates that patient stratification in functional precision medicine for treatment of HGSC relapse could be prospectively performed at the primary disease stage. Citation Format: Wojciech Senkowski, Laura Gall-Mas, Matias M. Falco, Yilin Li, Kari Lavikka, Mette C. Kriegbaum, Jaana Oikkonen, Daria Bulanova, Elin J. Pietras, Karolin Voßgröne, Yan-Jun Chen, Erdogan P. Erkan, Mia K. Høg, Ida M. Larsen, Tarja Lamminen, Katja Kaipio, Jutta Huvila, Anni Virtanen, Lars H. Engelholm, Pernille Christiansen, Eric Santoni Rugiu, Kaisa Huhtinen, Olli Carpén, Johanna Hynninen, Sampsa Hautaniemi, Anna Vähärautio, Krister Wennerberg. A platform utilizing high-grade serous ovarian cancer organoids for prospective patient stratification in functional precision medicine. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5779.
更多
查看译文
关键词
serous ovarian cancer organoids,ovarian cancer,prospective patient stratification,high-grade
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要