Versatile Femtosecond Laser Synchronization for Multiple-Timescale Transient IR Spectroscopy

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
Several ways to electronically synchronize different types of amplified femtosecond laser systems are presented, based on a single freely programmable electronics hardware: Arbitrary-detuning asynchronous optical sampling, as well as actively locking two femtosecond laser oscillators, albeit not necessarily to the same round-trip frequency. They allow us to rapidly probe a very wide range of timescales, from picoseconds to potentially seconds, in a single transient absorption experiment without the need to move any delay stage. Experiments become possible that address a largely unexplored aspect of many photochemical reactions, in particular in the context of photo-catalysis as well as photoactive proteins, where an initial femtosecond trigger very often initiates a long-lasting cascade of follow-up processes. The approach is very versatile, and allows us to synchronize very different lasers, such as a Ti:Sa amplifier and a 100~kHz Yb-laser system. The jitter of the synchronisation, and therewith the time-resolution in the transient experiment, lies in the range from 1~ps to 3~ps, depending on the method. For illustration, transient IR measurements of the excited state solvation and decay of a metal carbonyl complex as well as the full reaction cycle of bacteriorhodopsin are shown. The pros and cons of the various methods are discussed, with regard to the scientific question one might want to address, and also with regard to the laser systems that might be already existent in a laser lab.
更多
查看译文
关键词
transient ir spectroscopy,laser,multiple-timescale
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要