Modeling heat and water exchanges between the atmosphere and an 85-km2 dimictic subarctic reservoir using the 1D Canadian Small Lake Model

Journal of Hydrometeorology(2023)

引用 0|浏览4
暂无评分
摘要
Abstract Accurately modeling the interactions between inland water bodies and the atmosphere in meteorological and climate models is crucial, given the marked differences with surrounding landmasses. Modeling surface heat fluxes remains a challenge because direct observations available for validation are rare, especially at high latitudes. This study presents a detailed evaluation of the Canadian Small Lake Model (CSLM), a one-dimensional mixed-layer dynamic lake model, in reproducing the surface energy budget and the thermal stratification of a subarctic reservoir in eastern Canada. The analysis is supported by multi-year direct observations of turbulent heat fluxes collected on and around the 85-km 2 Romaine-2 hydropower reservoir (50.7°N, 63.2°W) by two flux towers: one operating year-round on the shore and one on a raft during ice-free conditions. The CSLM, which simulates the thermal regime of the water body including ice formation and snow physics, is run in offline mode and forced by local weather observations from 25 June 2018 to 8 June 2021. Comparisons between observations and simulations confirm that CSLM can reasonably reproduce the turbulent heat fluxes and the temperature behavior of the reservoir, despite the one-dimensional nature of the model which cannot account for energy inputs and outputs associated with reservoir operations. The best performance is achieved during the first few months after the ice break-up (mean error= −0.3 W m −2 and mean error= −2.7 W m −2 for latent and sensible heat fluxes). The model overreacts to strong wind events, leading to subsequent poor estimates of water temperature and eventually to an early freeze-up. The model overestimated the measured annual evaporation corrected for the lack of energy balance closure by 5% and 16% in 2019 and 2020.
更多
查看译文
关键词
water exchanges
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要