Equalization in Dispersion-Managed SystemsUsing Learned Digital Back-Propagation

Optics continuum(2023)

引用 0|浏览2
暂无评分
摘要
In this paper, we investigate the use of the learned digital back-propagation (LDBP) for equalizing dual-polarization fiber-optic transmission in dispersion-managed (DM) links. LDBP is a deep neural network that optimizes the parameters of DBP using the stochastic gradient descent. We evaluate DBP and LDBP in a simulated WDM dual-polarization fiber transmission system operating at 32 Gbaud/s per channel, with a dispersion map designed for a 28 × 72 km link with 15% residual dispersion. Our results show that in single-channel transmission, LDBP achieves an effective signal-to-noise ratio improvement of 6.3 dB and 2.5 dB using DP-16-QAM format, respectively, over linear equalization and DBP. In WDM transmission, the corresponding Q -factor gains are 1.1 dB and 0.4 dB, respectively. Additionally, we conduct a complexity analysis, which reveals that a frequency-domain implementation of LDBP and DBP is more favorable in terms of complexity than the time-domain implementation. These findings demonstrate the effectiveness of LDBP in mitigating the nonlinear effects in DM fiber-optic transmission systems.
更多
查看译文
关键词
digital,dispersion-managed,back-propagation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要